Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Fitoterapia ; 171: 105703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852388

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease linked to memory impairment. A current investigation was performed to assess the neuroprotective effect of Diospyrin, a novel therapeutic agent, for the curing of Alzheimer's disease. For this purpose, in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory assays and antioxidant studies were conducted, whereas in-vivo studies involved different behavioral animal models tests such as elevated plus maze (EPM), morris water maze (MWM) and paddling Y-maze test. Results of the in-vitro analysis showed IC50 values of 95 µg/mL for AChE and 110 µg/mL for BChE as compared to the standard drug donepezil (IC50: 95 & 85 µg/mL, respectively). DPPH antioxidant assay showed a maximum of 72.85% inhibition (IC50: 139.74 µg/mL) of DPPH-free radicals at the highest concentration of 1000 µg/mL as compared to the ascorbic acid (IC50: 13.72 µg/mL). Moreover, the in-vivo analysis revealed that diospyrin treatment demonstrated gradual betterment in memory and enhanced motor functionality. On the other hand, the computational analysis also showed that the diospyrin had exceptional binding affinities for both AChE and BChE enzymes. In the net shell, it may be deduced that our compound diospyrin could be a valuable drug candidate in managing neurodegenerative disorders like AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Simulação de Acoplamento Molecular
2.
J Biomol Struct Dyn ; 41(22): 12768-12776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644848

RESUMO

Clostridioides difficile is a gram-positive bacterium which is associated with different gastrointestinal related infections, and the numbers of cases related to it are continuously increasing in the past few years. Owing to high prevalence and development of resistance towards available antibiotics, it is required to develop new therapeutics to combat C. difficile infection. The current study was aimed to identify novel phytochemicals that could bind and inhibits the TcdB, an exotoxin which is required for the pathogenesis of bacteria, and hence can be considered as the future drug candidates against C. difficile. ∼2500 therapeutically important phyto-compounds were docked against the active sites of TcdB protein by using AutoDock-Vina software. The interactions between the ligands and the binding site of the top five docked complexes, based on the docking scores, were further elucidated by Molecular Dynamics Simulations of 500 ns, Molecular Mechanics Energies combined with the Poisson-Boltzmann and Surface Area (MMPBSA) or Generalized Born and Surface Area (MMGBSA), and WaterSwap Analysis. Findings of molecular docking suggested that natural compounds A183, A704, A1528, A2083, and A2129 with distinct chemical scaffolds are best docked in the binding site of TcdB and their bonding remained stable throughout the simulation studies of 500 ns. Compounds A2129 and A704 can be considered as prospective drug candidates against Clostridioides difficile, however, further wet lab experiments are needed to confirm our study.Communicated by Ramaswamy H. Sarma.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Fatores de Virulência , Simulação de Acoplamento Molecular , Clostridioides , Compostos Fitoquímicos/farmacologia
3.
PLoS One ; 17(12): e0277825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520861

RESUMO

Endophytic bacteria are the source of novel bioactive compounds, used as therapeutic agent. Molecular docking is a computational technique use frequently, to find novel drugs targets and drugs-receptors interactions. The current study was designed to isolate and identify endophytic bacteria for the extraction of bioactive compounds. Further, to characterized extracts and to explore compounds interactions with bacterial cell wall and outer membrane synthesizing proteins. Endophytes were identified using 16s rRNA amplification technique. For bioactive compounds, solvent extraction method was followed and characterized further through GC-MS analysis. To find targets and drugs-receptors interactions, molecular docking studies and biological assays were performed. The isolated endophytes belong to five different genera namely Enterobacter, Bacillus, Erwinia, Stenotrophomonas and Pantoea. In case of antibacterial assay Stenotrophomonas maltophilia extract showed significant inhibitory zones (15.11±0.11mm and 11.3±0.16) against Staphylococcus caseolyticus and Acinetobacter baumanni, with MIC 33.3 and 50µg/mL respectively. Among the characterized fifty compounds, from endophytic bacteria "antibacterial compound" N-(5-benzyl-10b-hydroxy-2-methyl-3,6-dioxooctahydro-8H-oxazolo[3,2-α] pyrrolo[2,1c] pyrazin-2-yl)-7-methyl2,3,3a,3a1,6,6a,7,8,9,10,10a,10b-dodecahydro-1H-4λ2-indolo[4,3-fg]quinoline-9-carboxamide of bacteria Stenotrophomonas maltophilia were an excellent binder with MurF ligase active site, with binding energy of -10.2 kcal/mol. Extracts of endophytic bacteria composed of various pharmacologically active ingredients such as antibacterial compounds. Molecular docking studies provide important information regarding drug-receptor interaction, thus can be used in novel drug discovery.


Assuntos
Bactérias , Endófitos , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/metabolismo , Simulação de Acoplamento Molecular , Bactérias/genética , Endófitos/metabolismo , Antibacterianos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
4.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432204

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronaviruses that emerged in China at Wuhan city, Hubei province during December 2019. Subsequently, SARS-CoV-2 has spread worldwide and caused millions of deaths around the globe. Several compounds and vaccines have been proposed to tackle this crisis. Novel recommended in silico approaches have been commonly used to screen for specific SARS-CoV-2 inhibitors of different types. Herein, the phytochemicals of Pakistani medicinal plants (especially Artemisia annua) were virtually screened to identify potential inhibitors of the SARS-CoV-2 main protease enzyme. The X-ray crystal structure of the main protease of SARS-CoV-2 with an N3 inhibitor was obtained from the protein data bank while A. annua phytochemicals were retrieved from different drug databases. The docking technique was carried out to assess the binding efficacy of the retrieved phytochemicals; the docking results revealed that several phytochemicals have potential to inhibit the SARS-CoV-2 main protease enzyme. Among the total docked compounds, the top-10 docked complexes were considered for further study and evaluated for their physiochemical and pharmacokinetic properties. The top-3 docked complexes with the best binding energies were as follows: the top-1 docked complex with a -7 kcal/mol binding energy score, the top-2 docked complex with a -6.9 kcal/mol binding energy score, and the top-3 docked complex with a -6.8 kcal/mol binding energy score. These complexes were subjected to a molecular dynamic simulation analysis for further validation to check the dynamic behavior of the selected top-complexes. During the whole simulation time, no major changes were observed in the docked complexes, which indicated complex stability. Additionally, the free binding energies for the selected docked complexes were also estimated via the MM-GB/PBSA approach, and the results revealed that the total delta energies of MMGBSA were -24.23 kcal/mol, -26.38 kcal/mol, and -25 kcal/mol for top-1, top-2, and top-3, respectively. MMPBSA calculated the delta total energy as -17.23 kcal/mol (top-1 complex), -24.75 kcal/mol (top-2 complex), and -24.86 kcal/mol (top-3 complex). This study explored in silico screened phytochemicals against the main protease of the SARS-CoV-2 virus; however, the findings require an experimentally based study to further validate the obtained results.


Assuntos
Artemisia annua , Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Proteases 3C de Coronavírus , Compostos Fitoquímicos/farmacologia
5.
Plants (Basel) ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270086

RESUMO

Ilex dipyrena Wall (Aquifoliaceae), is a traditional medicinal plant abundantly found in India and Pakistan. In the current research work, initially, the anatomical characteristics were recorded through microscopic examination of selected plant parts, such as leaf, petiole, and midrib. Then, the quantitative phytochemical screening was performed using standard tests reported in literature. The whole-plant powdered sample was then soaked in methanol to obtain crude extract, which was then fractionated into solvents of different polarities to obtain ethyl acetate, chloroform, butanol, hexane, and aqueous extracts. The phytochemical composition of the crude ethyl acetate and chloroform extracts (being the most active fractions) was then confirmed through HPLC analyses, where the possible phytochemical present were predicted through comparison of retention time of a given compound peak with the available standards. The extracts were also evaluated for their in vitro antioxidant and ani-lipoxygenase potentials using standard methods. The microscopic examination revealed the presence of anomocytic type stomata on the abaxial side of the leaf as well as unicellular trichrome and calcium oxalate druses crystals in the midrib and petiole, with a single, centered U-shaped collateral arterial bundle, which was directed toward the adaxial and the phloem toward the abaxial sides of the selected plant parts, respectively. Almost all tested representative groups of phytochemicals and essential minerals were detected in the selected plant, whereas five possible phytochemicals were confirmed in crude and chloroform extract and seven in ethyl acetate fraction. As antioxidant, chloroform fraction was more potent, which exhibited an IC50 value of 64.99, 69.15, and 268.52 µg/mL, determined through DPPH, ABTS, and FRAP assays. Ethyl acetate extract was also equally potent against the tested free radicals. Chloroform and ethyl acetate extracts were also potent against lipoxygenase, with IC50 value of 75.99 and 106.11 µg/mL, respectively. Based on the results of biological studies, Ilex dipyrena was found to good inhibitor of free radicals and lipoxygenase that could be further investigated to isolate compounds of medicinal importance.

6.
Front Mol Biosci ; 8: 716735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765641

RESUMO

V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint and is a type I transmembrane protein. VISTA is linked to immunotherapy resistance, and it is a potential immune therapeutic target, especially for triple-negative breast cancer. It expresses at a high concentration in regulatory T cells and myeloid-derived suppressor cells, and its functional blockade is found to delay tumor growth. A useful medicinal plant database for drug designing (MPD3), which is a collection of phytochemicals from diverse plant families, was employed in virtual screening against VISTA to prioritize natural inhibitors against VISTA. Three compounds, Paratocarpin K (PubChem ID: 14187087), 3-(1H-Indol-3-yl)-2-(trimethylazaniumyl)propanoate (PubChem ID: 3861164), and 2-[(5-Benzyl-4-ethyl-1,2,4-triazol-3-yl)sulfanylmethyl]-5-methyl-1,3,4-oxadiazole (PubChem ID: 6494266), having binding energies stronger than -6 kcal/mol were found to have two common hydrogen bond interactions with VISTA active site residues: Arg54 and Arg127. The dynamics of the compound-VISTA complexes were further explored to infer binding stability of the systems. Results revealed that the compound 14187087 and 6494266 systems are highly stable with an average RMSD of 1.31 Å. Further affirmation on the results was achieved by running MM-GBSA on the MD simulation trajectories, which re-ranked 14187087 as the top-binder with a net binding energy value of -33.33 kcal/mol. In conclusion, the present study successfully predicted natural compounds that have the potential to block the function of VISTA and therefore can be utilized further in experimental studies to validate their real anti-VISTA activity.

7.
Comput Biol Med ; 138: 104929, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655900

RESUMO

Cholera is a severe small intestine bacterial disease caused by consumption of water and food contaminated with Vibrio cholera. The disease causes watery diarrhea leading to severe dehydration and even death if left untreated. In the past few decades, V. cholerae has emerged as multidrug-resistant enteric pathogen due to its rapid ability to adapt in detrimental environmental conditions. This research study aimed to design inhibitors of a master virulence gene expression regulator, HapR. HapR is critical in regulating the expression of several set of V. cholera virulence genes, quorum-sensing circuits and biofilm formation. A blind docking strategy was employed to infer the natural binding tendency of diverse phytochemicals extracted from medicinal plants by exposing the whole HapR structure to the screening library. Scoring function criteria was applied to prioritize molecules with strong binding affinity (binding energy < -11 kcal/mol) and as such two compounds: Strychnogucine A and Galluflavanone were filtered. Both the compounds were found favourably binding to the conserved dimerization interface of HapR. One rare binding conformation of Strychnogucine A was noticed docked at the elongated cavity formed by α1, α4 and α6 (binding energy of -12.5 kcal/mol). The binding stability of both top leads at dimer interface and elongated cavity was further estimated using long run of molecular dynamics simulations, followed by MMGB/PBSA binding free energy calculations to define the dominance of different binding energies. In a nutshell, this study presents computational evidence on antibacterial potential of phytochemicals capable of directly targeting bacterial virulence and highlight their great capacity to be utilized in the future experimental studies to stop the evolution of antibiotic resistance evolution.


Assuntos
Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Compostos Fitoquímicos , Percepção de Quorum , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
8.
Vaccines (Basel) ; 9(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208663

RESUMO

Schistosomiasis is a parasitic infection that causes considerable morbidity and mortality in the world. Infections of parasitic blood flukes, known as schistosomes, cause the disease. No vaccine is available yet and thus there is a need to design an effective vaccine against schistosomiasis. Schistosoma japonicum, Schistosoma mansoni, and Schistosoma haematobium are the main pathogenic species that infect humans. In this research, core proteomics was combined with a subtractive proteomics pipeline to identify suitable antigenic proteins for the construction of a multi-epitope vaccine (MEV) against human-infecting Schistosoma species. The pipeline revealed two antigenic proteins-calcium binding and mycosubtilin synthase subunit C-as promising vaccine targets. T and B cell epitopes from the targeted proteins were predicted using multiple bioinformatics and immunoinformatics databases. Seven cytotoxic T cell lymphocytes (CTL), three helper T cell lymphocytes (HTL), and four linear B cell lymphocytes (LBL) epitopes were fused with a suitable adjuvant and linkers to design a 217 amino-acid-long MEV. The vaccine was coupled with a TLR-4 agonist (RS-09; Sequence: APPHALS) adjuvant to enhance the immune responses. The designed MEV was stable, highly antigenic, and non-allergenic to human use. Molecular docking, molecular dynamics (MD) simulations, and molecular mechanics/generalized Born surface area (MMGBSA) analysis were performed to study the binding affinity and molecular interactions of the MEV with human immune receptors (TLR2 and TLR4) and MHC molecules (MHC I and MHC II). The MEV expression capability was tested in an Escherichia coli (strain-K12) plasmid vector pET-28a(+). Findings of these computer assays proved the MEV as highly promising in establishing protective immunity against the pathogens; nevertheless, additional validation by in vivo and in vitro experiments is required to discuss its real immune-protective efficacy.

9.
Eur J Pharmacol ; 902: 174091, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33865830

RESUMO

The synthesis of a novel cyclohexanone derivative (CHD; Ethyl 6-(4-metohxyphenyl)-2-oxo-4-phenylcyclohexe-3-enecarboxylate) was described and the subsequent aim was to perform an in vitro, in vivo and in silico pharmacological evaluation as a putative anti-nociceptive and anti-inflammatory agent in mice. Initial in vitro studies revealed that CHD inhibited both cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzymes and it also reduced mRNA expression of COX-2 and the pro-inflammatory cytokines TNF-α and IL-1ß. It was then shown that CHD dose dependently inhibited chemically induced tonic nociception in the abdominal constriction assay and also phasic thermal nociception (i.e. anti-nociception) in the hot plate and tail immersion tests in comparison with aspirin and tramadol respectively. The thermal test outcomes indicated a possible moderate centrally mediated anti-nociception which, in the case of the hot plate test, was pentylenetetrazole (PTZ) and naloxone reversible, implicating GABAergic and opioidergic mechanisms. CHD was also effective against both the neurogenic and inflammatory mediator phases induced in the formalin test and it also disclosed anti-inflammatory activity against the phlogistic agents, carrageenan, serotonin, histamine and xylene compared with standard drugs in edema volume tests. In silico studies indicated that CHD possessed preferential affinity for GABAA, opioid and COX-2 target sites and this was supported by molecular dynamic simulations where computation of free energy of binding also favored the formation of stable complexes with these sites. These findings suggest that CHD has prospective anti-nociceptive and anti-inflammatory properties, probably mediated through GABAergic and opioidergic interactions supplemented by COX-2 and 5-LOX enzyme inhibition in addition to reducing pro-inflammatory cytokine expression. CHD may therefore possess potentially beneficial therapeutic effectiveness in the management of inflammation and pain.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Cicloexanonas/farmacologia , Cicloexenos/farmacologia , Inflamação/tratamento farmacológico , Dor Nociceptiva/tratamento farmacológico , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Araquidonato 5-Lipoxigenase/metabolismo , Comportamento Animal/efeitos dos fármacos , Simulação por Computador , Cicloexanonas/química , Cicloexanonas/uso terapêutico , Cicloexanonas/toxicidade , Cicloexenos/química , Cicloexenos/uso terapêutico , Cicloexenos/toxicidade , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/toxicidade , Citocinas/genética , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Feminino , Inflamação/induzido quimicamente , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Inibidores de Lipoxigenase/toxicidade , Masculino , Camundongos Endogâmicos BALB C , Dor Nociceptiva/induzido quimicamente , Receptores de GABA/química , Receptores de GABA/efeitos dos fármacos , Receptores Opioides/química , Receptores Opioides/efeitos dos fármacos
10.
Comput Biol Med ; 134: 104415, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33910128

RESUMO

Malaria is a life-threatening infectious disease with an estimated 229 million cases in the year 2019 worldwide. Plasmodium falciparum 1-deoxy-d-xylulose-5-phosphate reductoisomerase (PfDXR) is one of the key enzymes in the biosynthetic pathway of isoprenoid, (required for parasite growth and survival) and considered as an attractive target for designing anti-malarial drugs. Fosmidomycin is an effective DXR inhibitor and has been proven effective and safe against P. falciparum in clinical trials. However, due to low bioavailability and inappropriate drug attributes, it is not a preferred option. The present study was performed to identify PfDXR inhibitors with improved pharmacology/safety. For this purpose, an integrated computational framework, comprising of pharmacophore modeling, virtual screening, molecular docking, molecular dynamics (MD) simulation and MM/PBSA, was used. The binding free energy analysis was performed using a focused library of phytochemicals established from medicinal plants. The study identified four bioactive compounds namely, Myricetin 3-rhamnoside, 7-O-Galloyltricetiflavan, (25S)-5-beta-spirostan-3-beta-ol 3-O-beta-d-glucopyranosyl-(1->2)-beta-d-glucopyranoside, and Oleanolic acid 28-O-beta-d-glucopyranoside as potential inhibitors of PfDXR. The selection of these four compounds was based on pharmacophore mapping, docking score, binding stability, molecular interactions with the residues of PfDXR active site, binding stability and free energy estimation. In conclusion, medicinal plant-based scaffolds were predicted with enhanced efficacy and adequate physiochemical/pharmacokinetic profile that might be helpful in controlling malaria.


Assuntos
Aldose-Cetose Isomerases , Antimaláricos , Produtos Biológicos , Malária Falciparum , Antimaláricos/farmacologia , Inibidores Enzimáticos , Humanos , Malária Falciparum/tratamento farmacológico , Simulação de Acoplamento Molecular , Plasmodium falciparum
11.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800013

RESUMO

With the emergence and global spread of the COVID-19 pandemic, the scientific community worldwide has focused on search for new therapeutic strategies against this disease. One such critical approach is targeting proteins such as helicases that regulate most of the SARS-CoV-2 RNA metabolism. The purpose of the current study was to predict a library of phytochemicals derived from diverse plant families with high binding affinity to SARS-CoV-2 helicase (Nsp13) enzyme. High throughput virtual screening of the Medicinal Plant Database for Drug Design (MPD3) database was performed on SARS-CoV-2 helicase using AutoDock Vina. Nilotinib, with a docking value of -9.6 kcal/mol, was chosen as a reference molecule. A compound (PubChem CID: 110143421, ZINC database ID: ZINC257223845, eMolecules: 43290531) was screened as the best binder (binding energy of -10.2 kcal/mol on average) to the enzyme by using repeated docking runs in the screening process. On inspection, the compound was disclosed to show different binding sites of the triangular pockets collectively formed by Rec1A, Rec2A, and 1B domains and a stalk domain at the base. The molecule is often bound to the ATP binding site (referred to as binding site 2) of the helicase enzyme. The compound was further discovered to fulfill drug-likeness and lead-likeness criteria, have good physicochemical and pharmacokinetics properties, and to be non-toxic. Molecular dynamic simulation analysis of the control/lead compound complexes demonstrated the formation of stable complexes with good intermolecular binding affinity. Lastly, affirmation of the docking simulation studies was accomplished by estimating the binding free energy by MMPB/GBSA technique. Taken together, these findings present further in silco investigation of plant-derived lead compounds to effectively address COVID-19.


Assuntos
Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacocinética , Antivirais/toxicidade , Sítios de Ligação , Disponibilidade Biológica , Biologia Computacional/métodos , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Metiltransferases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Plantas Medicinais/química , Ligação Proteica , Domínios Proteicos/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Pirimidinas/toxicidade , RNA Helicases/química , Relação Estrutura-Atividade , Termodinâmica , Proteínas não Estruturais Virais/química , Tratamento Farmacológico da COVID-19
12.
Curr Drug Deliv ; 18(7): 922-934, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33726649

RESUMO

BACKGROUND: Bistorta amplexicaulis of the genus Polygonum (Polygonaceae) has been reported for its antioxidant and anticancer activities. However, the low cellular uptake of the compounds in its extract limits its therapeutic application. OBJECTIVES: The present study aimed at developing a nanoliposomal carrier system for B. amplexicaulis extracts for improved cellular uptake, thus resulting in enhanced anticancer activity. METHODS: Ultra Pressure Liquid Chromatography (UPLC) was used to identify major compounds in the plant extract. Nanoliposomes (NLs) were prepared by employing a thin-film rehydration method using DPPC, PEG2000DSPE and cholesterol, followed by characterization through several parameters. In vitro screening was performed against breast cancer cell line (MCF-7) and Hepatocellular carcinoma cell line (HepG-2) using MTT-assay. Raw extract and nanoliposomes were tested on Human Umbilical Vein Endothelial Cells (HUVEC). Moreover, molecular docking was performed to validate the data obtained through wet lab. RESULTS: The UHPLC method identified gallic acid, caffeic acid, chlorogenic acid and catechin as the major compounds in the extract. The NLs with a size ranging between 140-155 nm, zeta potential -16.9 to -19.8 mV and good polydispersity index of < 0.1 were prepared, with a high encapsulation efficiency of 81%. The MTT assay showed significantly (p > 0.05) high uptake and cytotoxicity of NLs as compared to the plant extract. Moreover, reduced toxicity against HUVEC cells was observed as compared to the extract. Also, the docking of identified compounds suggested a favorable interaction with the SH2 domain of both STAT3 and STAT5. CONCLUSION: Overall, the results suggest NLs as a potential platform that could be developed for the improved intracellular delivery of plant extract, thus increasing the therapeutic outcomes.


Assuntos
Carcinoma Hepatocelular , Polygonaceae , Carcinoma Hepatocelular/tratamento farmacológico , Células Endoteliais , Humanos , Lipossomos , Células MCF-7 , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
13.
Ecotoxicol Environ Saf ; 212: 111978, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561774

RESUMO

Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. Among nanoparticles (NPs), titanium dioxide (TiO2) NPs have been widely used in daily life and can be synthesized through various physical, chemical, and green methods. Green synthesis is a non-toxic, cost-effective, and eco-friendly route for the synthesis of NPs. Plenty of work has been reported on the green, chemical, physical and biological synthesis of TiO2 NPs and these NPs can be characterized through high tech. instruments. In the present review, dense data have been presented on the comparative synthesis of TiO2 NPs with different characteristics and their wide range of applications. Among the TiO2 NPs synthesis techniques, the green methods have been proven to be efficient than chemical synthesis methods because of the less use of precursors, time-effectiveness, and energy-efficiency during the green synthesis procedures. Moreover, this review describes the types of plants (shrubs, herbs and trees), microorganisms (bacteria, fungi and algae), biological derivatives (proteins, peptides, and starches) employed for the synthesis of TiO2 NPs. The TiO2 NPs can be effectively used for the treatment of polluted water and positively affected the plant physiology especially under abiotic stresses but the response varied with types, size, shapes, doses, duration of exposure, metal species along with other factors. This review also highlights the regulating features and future standpoints for the measurable enrichment in TiO2 NPs product and perspectives of TiO2 NPs reliable application.


Assuntos
Nanopartículas , Titânio , Nanopartículas Metálicas/química , Extratos Vegetais , Plantas/química
14.
J Biomol Struct Dyn ; 39(12): 4225-4233, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32462996

RESUMO

Nigella sativa or black seed is used as a medicinal plant around the globe. Oil and seeds have a long tradition of folklore use in various medicinal and food systems. The conventional therapeutic use of Nigella sativa, in different ways, has been reported in several studies to treat different diseases including influenza, headache, hypertension, diabetes, inflammation, eczema, fever, cough, asthma, bronchitis, and fever. Based on previously reported potential therapeutic uses of N. sativa compounds, and keeping in mind the dire need of time for the development of potent antiviral, a combined docking, ADMET properties calculation, molecular dynamics, and MM-PBSA approaches were applied in the current study to check the therapeutic potentials of N. sativa chief constituents against COVID-19. Among the studied compounds, we found that dithymoquinone (DTQ), with binding affinity of -8.6 kcal/mol compared to a positive control (chloroquine, -7.2 kcal/mol) , has the high potential of binding at SARS-CoV-2:ACE2 interface and thus could be predicted as a plausible inhibitor to disrupt viral-host interactions. Molecular dynamics simulation of 100 ns well complemented binding affinity of the compound and revealed strong stability of DTQ at the docked site. Additionally, MM-PBSA also affirms the docking results. Compound DTQ of the present study, if validated in wet lab experiments, could be used to treat COVID-19 and could serve as a lead in the future for development of more effective natural antivirals against COVID-19. Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Nigella sativa , Humanos , Antivirais/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2
15.
Chemosphere ; 258: 127352, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32554013

RESUMO

The production of metallic nanoparticles (NPs) by green and ecofriendly methods has received consideration during the recent past. The present study summarized the comparative production of titanium dioxide (TiO2) NPs by plant extracts of Trianthema portulacastrum (T2) and Chenopodium quinoa (T3) and by conventional chemical (sol-gel) method (T1). Synthesized TiO2-NPs were examined by high-tech. techniques such as X-Ray Diffraction (XRD), Fourier Transmission Infra-red (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) spectroscope, SEM-EDS spot analysis and elemental mapping. Synthesized TiO2-NPs were applied on wheat rust (Ustilago tritici) for the evaluation of their antifungal activity against toxic plant pathogens. XRD results confirmed the (2θ) peak at 25.3 related to 101 anatase form. EDS-spot analysis and elemental mapping confirms the formation of TiO2-NPs by using these techniques. SEM secondary electrons (SEs) images demonstrated the nano range of particles in cluster form with fewer porous structures. The average size of all three TiO2-NPs was found less than 15 nm. FT-IR analysis of all three TiO2-NPs perfectly matched with the standard parameters. The NPs prepared by both sol-gel and green methods have a good antifungal response against U. tritici, and the green prepared TiO2-NPs were found to have the best antifungal activity against wheat rust especially NPs synthesized with the extract of C. quinoa. Overall, green method can be used for the large scale and less toxic synthesis of TiO2-NPs because of their wide range of environmental applications.


Assuntos
Antifúngicos/química , Nanopartículas/química , Titânio/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triticum , Difração de Raios X
16.
BMC Complement Med Ther ; 20(1): 143, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32397979

RESUMO

BACKGROUND: Elaeagnus umbellata is abundantly found in Himalayan regions of Pakistan which is traditionally used to treat various health disorders. However, the experimental evidence supporting the anti-amnesic effect is limited. Therefore the study was aimed to evaluate the prospective beneficial effect of E. umbellata on learning and memory in mice. OBJECTIVES: To assess neuroprotective and anti-amnesic effects of E. umbellata fruit extracts and isolated compounds on the central nervous system. METHODS: Major phytochemical groups present in methanolic extract of E. umbellata were qualitatively determined. The total phenolic and flavonoid contents were also determined in extract/fractions of E. umbellata. On the basis of in vitro promising anticholinesterases (AChE & BChE) and antioxidant activities observed for CHF. Ext and isolated compound-I (Chlorogenic acid = CGA), they were further evaluated for learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Y maze and Novel object recognition using standard procedures. The test sample were further assessed for in vivo anticholinesterases (AChE & BChE) and DPPH free radical scavenging activities in mice brain sample and finally validated by molecular docking study using GOLD software. RESULTS: The extract/fractions and isolated compounds were tested for their anticholinesterase and antioxidant potentials. The CHF. Ext and CGA showed maximum % inhibition of tested cholinesterases and free radicals. The CHF. Ext and CGA reversed the effects of scopolamine in mice. The CHF. Ext and CGA significantly increased the alternate arm returns and % spontaneous alteration performance while escape latency times (second) significantly decreased in Y maze test. The CHF. Ext and CGA significantly increased the time spent with novel object and also increased the discrimination index in the Novel object recognition test. Furthermore, molecular docking was used to validate the mechanism of cholinesterases inhibition of isolated compounds. CONCLUSION: The data obtained from behavioral and biochemical studies (AChE/BChE and DPPH/ABTS inhibition) have shown that E. umbellata possessed significant memory enhancing potency. These results suggest that E. umbellata extract possess potential antiamnesic effects and amongst the isolated compounds, compound I could be more effective anti-amnesic therapeutics. However, further studies are needed to identify the exact mechanism of action.


Assuntos
Amnésia/tratamento farmacológico , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Amnésia/induzido quimicamente , Animais , Modelos Animais de Doenças , Elaeagnaceae , Camundongos , Paquistão , Escopolamina
17.
Environ Sci Pollut Res Int ; 27(7): 7639-7646, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31889276

RESUMO

Like other vegetables, Pisum sativum L. also faces storage and degradation problems. To enhance their resistance and make them enable to cope with the deterioration problems during storage, the current study was designed to develop two resistant lines of P. sativum in terms of phenolic contents and genotypes. The phenolic compounds generally have antioxidant properties and deterioration during storage which are usually due to oxidation caused by free radicals. Thus, if a variety has high phenolic contents these problems will be coped in a better way. The genotype of a plant is also important in this regard, and the best adopted species would survive in unfavorable conditions. First, the phenolic and flavonoid contents were determined in the crude extract using the Folin-Ciocalteu method. Then, the identification and quantification of phenolic compounds were carried out in the developed lines of selected plants PL-04 and PL-05, as well as in the parental varieties [Climax (female) and Falan (male)] via HPLC. DPPH assay was used to determine the free radical scavenging capabilities of the extracts of the developed verities. The genotypic differences were confirmed by DNA fingerprinting using advanced simple sequence repeat (SSR) markers. The HPLC analysis of PL-04 confirmed the presence of three phenolic compounds in an appreciable amount which exhibited a higher antioxidant activity against DPPH radicals, while in the parental varieties, two phenolic compounds were identified and exhibited lower antioxidant activities. PL-04 was found rich in phenolic compounds and affectively scavenge-free radicals which would therefore be resistant to oxidation and degradation caused by free radicals. Comparing the present findings with our previous one, P-04 was found to be resistant to powdery mildew; it was concluded that the most probable reason of the resistance was the high phenolic contents and thus long shelf life.


Assuntos
Antioxidantes/química , Fenóis/química , Pisum sativum/química , Impressões Digitais de DNA , Flavonoides/química , Repetições de Microssatélites , Oxirredução , Extratos Vegetais/química
18.
Pak J Pharm Sci ; 32(5): 1971-1977, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31813860

RESUMO

Based on the ethnomedicinal use of Isodon rugosus the current study was designed to evaluate its crude saponins (Ir.Sp), and subsequent fractions for anti-angiogenic and anti-tumor potentials. Chorioallantoic membrane (CAM) assay was used in anti-angiogenic potentials with Dexamethasone as positive control. The antitumor activity was evaluated with potato disk method using Vincristine sulfate as positive control. Moreover, antibacterial activity was also conducted against A. tumefaciens. The highest anti-angiogenic effect was observed with Ir.Sp, i.e., 79.00±0.58% at concentration of 1000 µg/ml which drop drown to 48.67±1.20% at lowest tested concentration of 31.25 µg/ml with IC50 of 41 µg/ml. Similarly, in the anti-tumor activity the Ir. Chf revealed excellent inhibition of tumor with IC50 value of 60 µg/ml. All the samples (excluding Ir. Sp and Ir. Cr) were inactive against A. tumefaciens, which demonstrates that the samples which did not show any antibacterial activity are rich in certain bioactive principles which may be responsible for the anti-tumor and anti-angiogenic potentials. Our results conclude that the Ir.Sp, Ir.Chfmay be good targets for isolation of bioactive compounds responsible for the inhibition of excessive proliferation of cells and angiogenesis.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Isodon/química , Neovascularização Patológica/tratamento farmacológico , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Solanum tuberosum/efeitos dos fármacos , Agrobacterium tumefaciens/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Galinhas , Medicina Tradicional/métodos , Metanol/química , Óvulo/efeitos dos fármacos
19.
Ecotoxicol Environ Saf ; 178: 33-42, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30991245

RESUMO

The exchangeable sodium (Na+) in salt affected soils is a major constraint in potassium (K+) availability to plants that disturb ion transport and inhibit plant growth, adversely. Salt tolerant plant growth promoting rhizobacteria (PGPR) may regulate the Na+/K+ efflux and increase K+ uptake by the plant from the soil. Therefore, a pot study was performed to examine the effect of salt tolerant PGPR Bacillus sp. alone and in consortium, on antioxidant enzyme activity, ion uptake and potato (Solanum tuberosum L.) tuber yield in normal and salt affected soils. We observed that Bacillus sp. (strains SR-2-1 and SR-2-1/1) solubilized insoluble phosphorous and produced indole-3-acetic acid while only SR-2-1/1 produced ACC deaminase in culture medium supplemented with various concentrations of NaCl (0-6%). In the pot experiment, the consortium treatment of strains was found to increase relative leaf water contents whereas decreased the electrolyte leakage and antioxidant enzyme activity both in normal and salt affected soils. Similarly, consortium treatment decreased Na+ whereas increased K+, Ca+2, K+/Na+ and Ca+2/Na+ in plant dry matter in both soils. It has been investigated that inoculation of PGPR significantly (p < 0.05) increased plant biomass, number of tubers per plant and tuber weight as compared to un-inoculated plants in both soils. In addition, PGPR inoculation enhanced auxin production in root exudates of young potato plants and bacterial population dynamics in both soils. Na+ ion regulation (R2 = 0.95) and tuber weight (R2 = 0.90) in salt affected soil were significantly correlated with auxin production in the rhizosphere. Results of this study conferred that consortium of Bacillus strains (SR-2-1, SR-2-1/1) enhanced auxin production in the rhizosphere of potato plants and that ultimately regulated antioxidant enzyme production and uptake of Na+, K+ and Ca+2 in potato plants resulted into a higher tuber yield in both normal and salt affected soils.


Assuntos
Antioxidantes/metabolismo , Bacillus/crescimento & desenvolvimento , Plantas Tolerantes a Sal , Solo/química , Solanum tuberosum/microbiologia , Biomassa , Rizosfera , Microbiologia do Solo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo
20.
BMC Complement Altern Med ; 19(1): 4, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606171

RESUMO

BACKGROUND: Plants represent an intricate and innovative source for the discovery of novel therapeutic remedies for the management of various ailments. The current study has been aimed to validate the therapeutic potential of ethnomedicinally significant plant Atriplex lasiantha Boiss. METHODS: The polarity based extraction process was carried out using fourteen solvents to figure out best extraction solvent and bioactive fractions. Total phenolic-flavonoids contents were quantified colorimetrically and polyphenolics were measured using HPLC-DAD analysis. Moreover, the test samples were tested against several diseases targets following various assays including free radicals scavenging, antibacterial, antifungal, cytotoxic and antileishmanial assay. RESULTS: Among the solvent fractions, maximum yield was obtained with methanol-water extract i.e., 11 ± 0.49%. Maximum quantity of gallic acid equivalent phenolic content and quercetin equivalent flavonoid content were quantified in methanol-ethyl acetate extract of A. lasiantha. Significant quantity of rutin i.e., 0.3 µg/mg was quantified by HPLC analysis. The methanol-ethyl acetate extract of A. lasiantha exhibited maximum total antioxidant and total reducing power with 64.8 ± 1.16 AAE/mg extract respectively, while showing 59.8 ± 1.07% free radical scavenging potential. A significant antibacterial potential was exhibited by acetone-distilled water extract of A. lasiantha with 11 ± 0.65 mm zone of inhibition against B. subtilis. Considerable antifungal activity was exhibited by ethyl acetate-n-hexane extract of aerial part of A. lasiantha with 14 ± 1.94 mm zone of inhibition against A. fumigatus. Highest percentage of α-amylase inhibition (41.8 ± 1.09%) was observed in ethyl acetate-n-hexane extract. Methanol-acetone extract of A. lasiantha demonstrated significant inhibition of hyphae formation with 11 ± 0.49 mm bald zone of inhibition. Significant in-vitro cytotoxicity against Hep G2 cell line has been exhibited by methanol-chloroforms extract of A. lasiantha. CONCLUSION: The current study reveals the prospective potential of Atriplex lasiantha Boiss. for the discovery of biologically active compounds through bioassay guided isolation against various diseases.


Assuntos
Chenopodiaceae/química , Cromatografia Líquida de Alta Pressão/métodos , Compostos Fitoquímicos , Extratos Vegetais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bacillus subtilis/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Fenóis , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA